Proton FLASH Ultra High Dose Rate Treatment Plans: Dosimetric Comparisons to Standard of Care

Anthony Magliari, MS, CMD 2023 AAMD National Meeting

FLASH therapy is under development and not available for commercial sale.

I am employed by Varian on the Medical Affairs team

My job currently includes testing new products and providing feedback including FLASH radiotherapy

I've been creating FLASH treatment plans since 2017

I used development builds of Eclipse and Non Clinical modes of the ProBeam delivery system for examples

FLASH therapy is under development and not available for commercial sale

DISCLAIMER:

varian

A Siemens Healthineers Company

"The views expressed in this presentation are mine, and mine alone. They do not represent those of Varian, A Siemens Healthineers Company"

Previous AAMD national meeting talks: 2016 Role of the Dosimetrist in the Knowledge Based Planning Era

2017 IMRT and VMAT: current and future best practices 2019 FLASH Radiotherapy: A Look at Ultra-high Dose Rate Research and Treatment Plans

2022 Knowledge Sharing and the Power of Plan Challenge ScoreCards

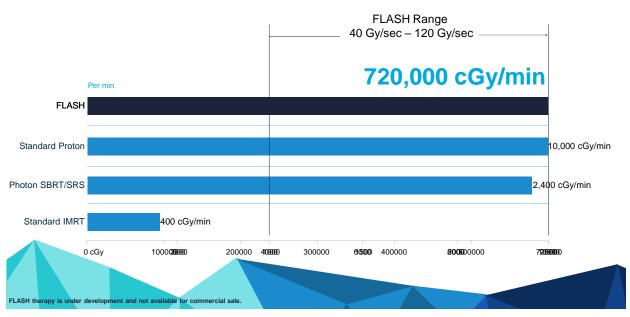
Disclaimer 2: FLASH Intellectual Property

- Varian intends to leverage all intellectual property protections and is committed to protecting our innovations throughout the world.
- Varian has numerous pending and issued patents worldwide related to FLASH therapy and technology

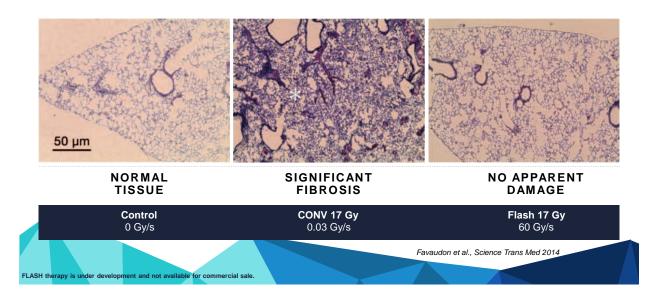
FLASH therapy is under development and not available for commercial sale.

- 1 FLASH Review
- 2 Defining Dose Rate
- **3 Dosimetric Comparisons**
- 4 Future Possibilities

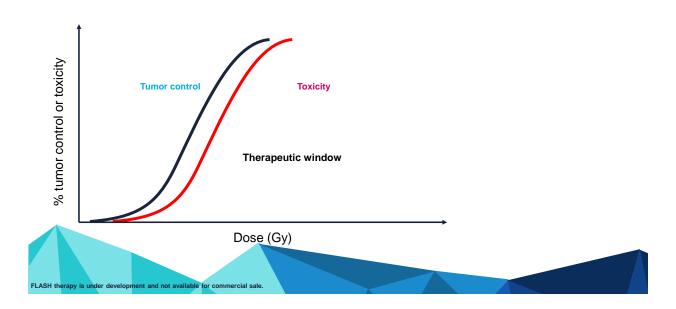
LET'S DO THIS

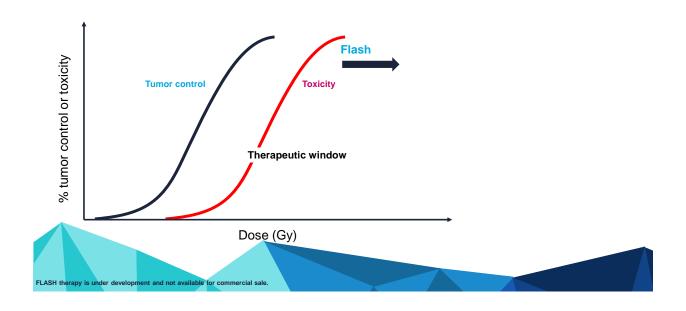

FLASH Review

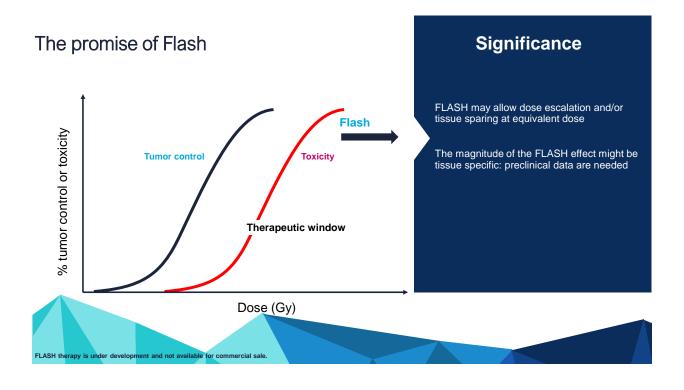
Background slides to explain Flash Radiotherapy


1

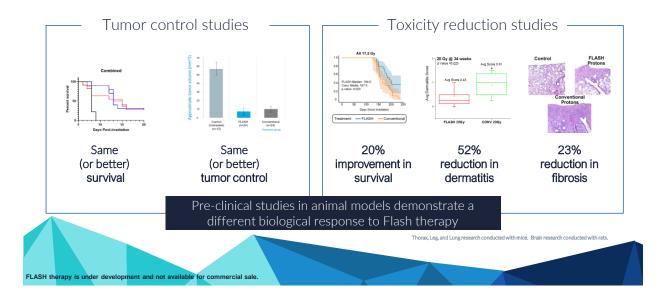
FLASH therapy is under development and not available for commercial sale.

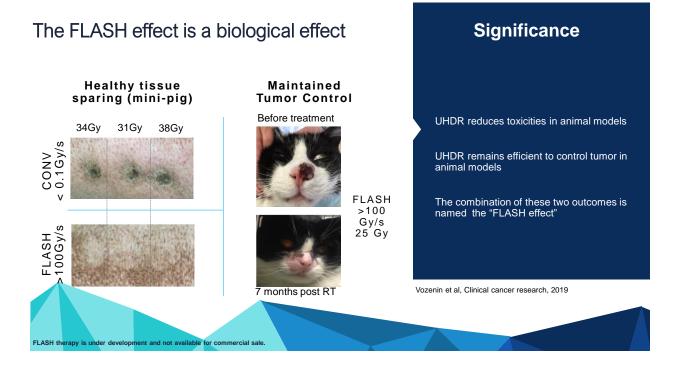

Ultra High Dose Rates

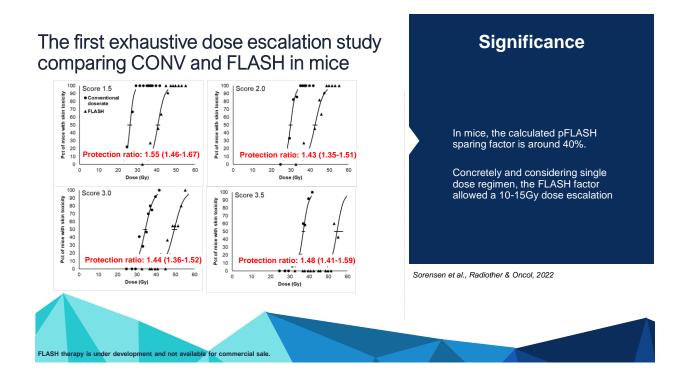

Electron Flash reduces lung fibrosis in mice compared to conventional electron therapy



The promise of Flash



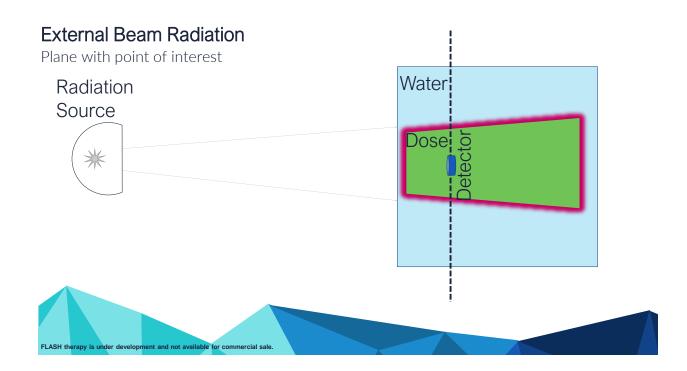

The promise of Flash



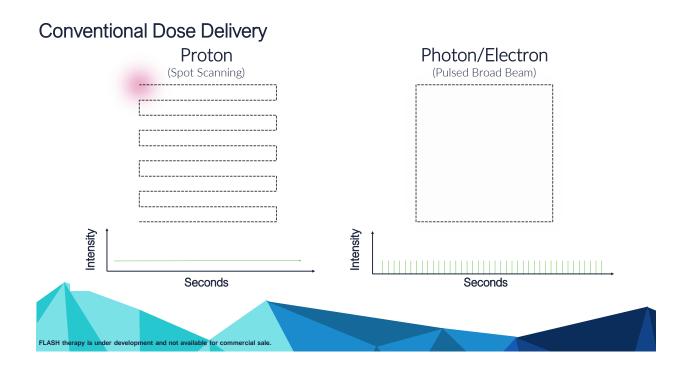
Consistent evidence of tumor control and reduction in toxicity—across anatomical sites

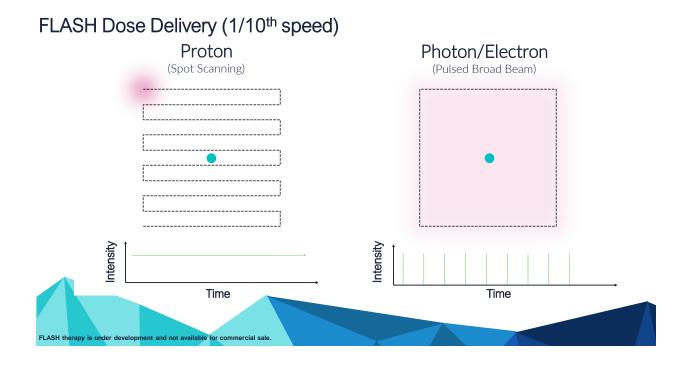
FLASH Therapy – a hot topic in cancer treatment

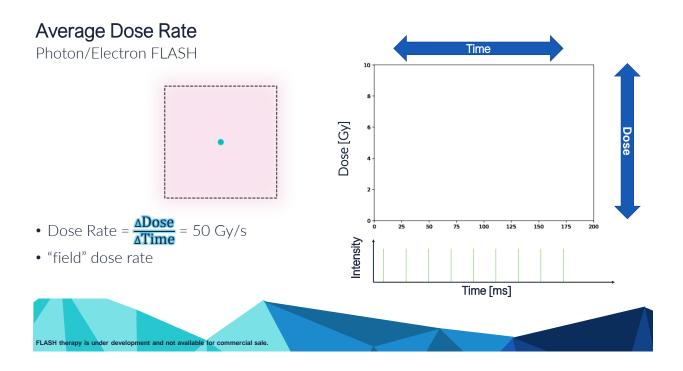
>200 peer-reviewed articles

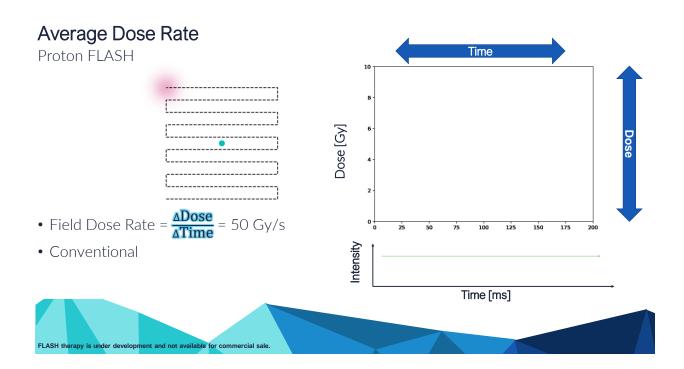


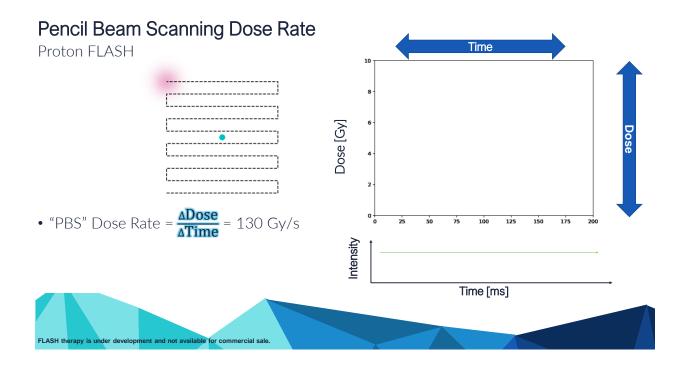
Defining Dose Rate


Pencil Beam Scanning Dose Rate

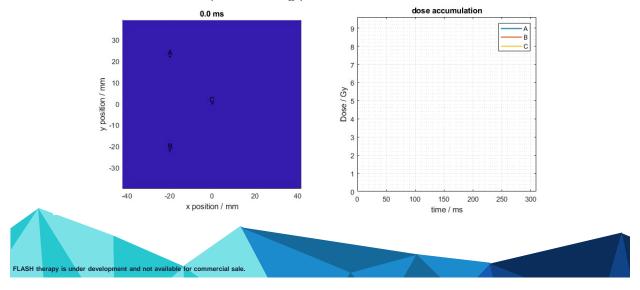

2



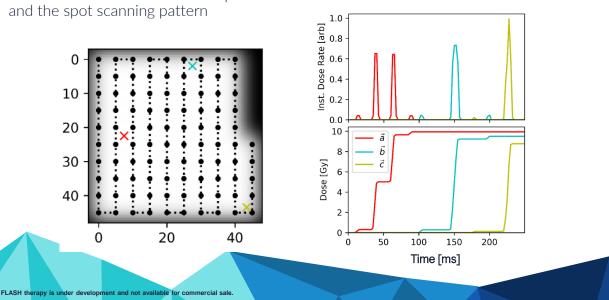

Plane with point of interest Water Dose Detector


Conventional Delivery Proton (Spot Scanning)	Photon/Electron (Pulsed Broad Beam)
L	
FLASH therapy is under development and not available for commercial sale.	

Dose Rate Peer-Reviewed Article

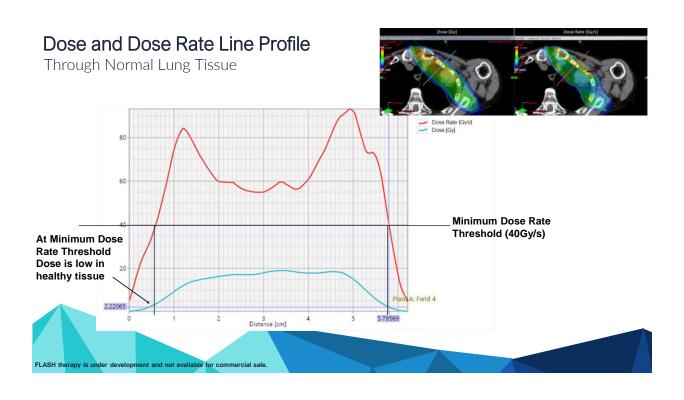

Published September 2020

https://doi.org/10.1002/mp.14456

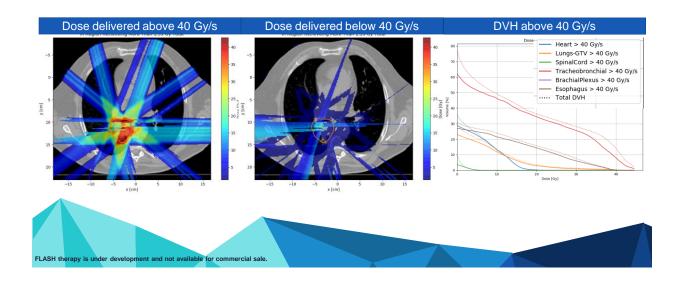

Dose rate and dose accumulation in PBS field

Dose accumulation over time depends on the location within the treatment field and the spot scanning pattern

Dose rate and dose accumulation in PBS field


Dose accumulation over time depends on the location within the treatment field

Dose and Dose Rate Display


Single Field in a multi-field Flash Lung Treatment Plan

Rethinking Treatment Planning

How to Review a Flash Plan to ensure the Flash conditions are met?

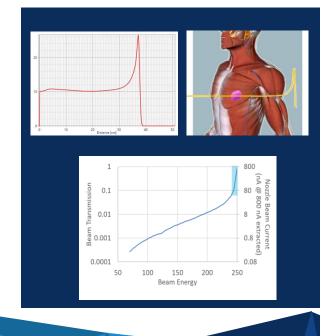
Transmission planning

How to deliver at UHDR?

Need

Ultra-High Dose Rate should be available for treatment to get in Flash range.

• Challenge


Dose rate drops significantly due to beam current loss.

Solution

No use of upstream energy degrader.

Highest dose rate achieved at Maximum Beam Energy from cyclotron: **250 MeV**

First approach: Bragg Peak is outside of Patient

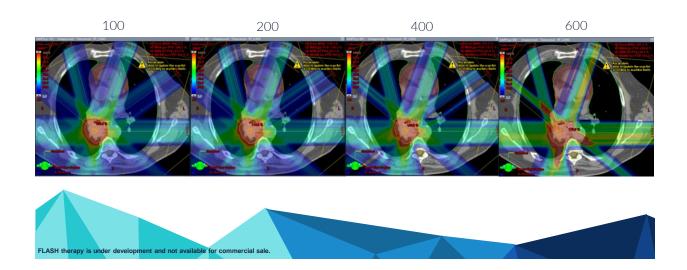
Optimization for Flash

How to optimize on both dose and dose rate?

Need

Increase dose rate without compromising the dose distribution

• Challenge


Dose distribution suffers when dose rate (MUs) increase due

- Solution:
 - Optimize using the Min MU as a surrogate for dose rate (high min MU = high current = high dose rate)

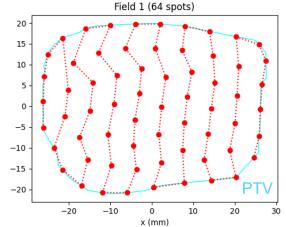
Increasing min MU to increase dose rate

Drastic degradation of plan dosimetry...if not done correctly

Optimization for Flash

How to optimize on both dose and dose rate?

Need


Maintain a homogenous dose distribution while increasing dose rate

Challenge

Fewer spots with higher MUs per spot can lead to uneven dose distribution (hot or cold spots)

• Solution:

Place spots evenly to ensure homogenous dose distribution without hot spots

Concept Review:

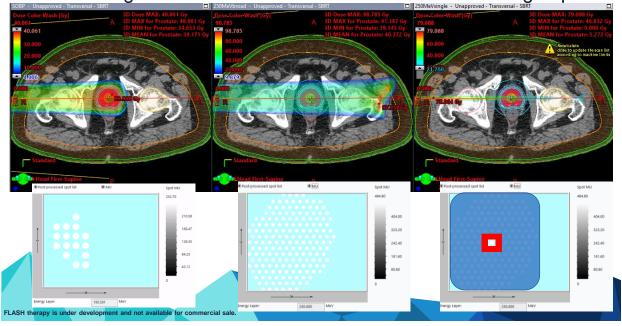
Best case scenario for achieving ultra-high dose rate Flash plans when utilizing the PBS dose rate definition:

- a.Large targets with a low dose per fraction
- b.Large targets with a high dose per fraction
- c.Small targets with a low dose per fraction
- d.Small targets with a high dose per fraction

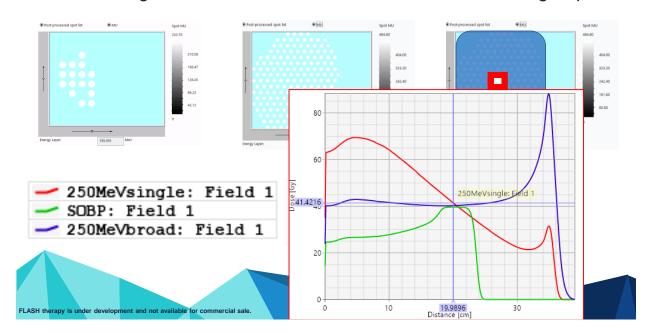
Concept Review:

Proton spot spacing and layer spacing's effect on treatment quality is:

- a. Inconsequential, using the defaults as defined in the treatment planning system is best
- b. It matters and is best to have as many spots as possible with dense spot and layer spacing for the best dosimetric plan quality
- c. Spending time finding an optimal sparse spacing of spots can lead to better dosimetry and larger minimum MU per field, also decreasing the treatment time

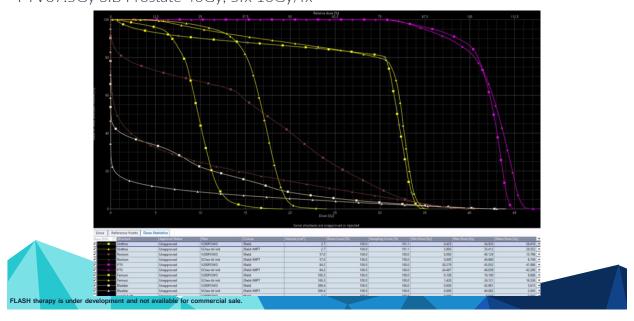

Dosimetric Comparison

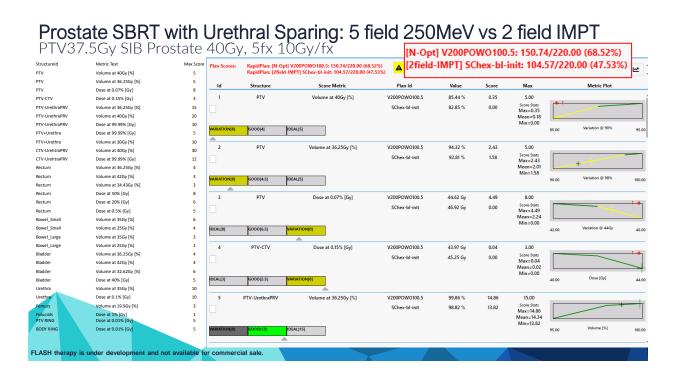
FLASH plans compared to IMPT standard of care

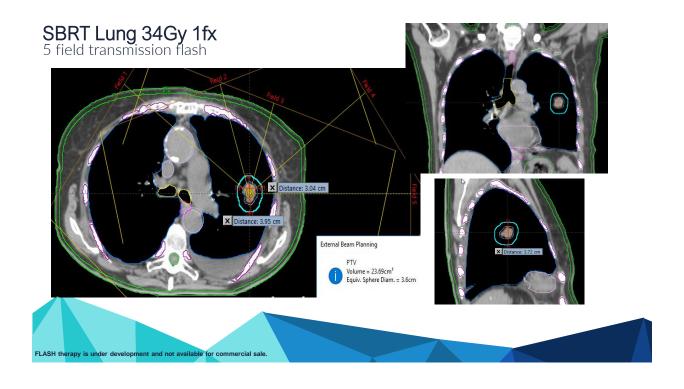

3

FLASH therapy is under development and not available for commercial sale.

Understanding SOBP vs 250MeV broad-beam vs 250MeV single spot

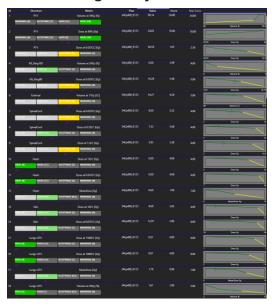

Understanding SOBP vs 250MeV broad-beam vs 250MeV single spot

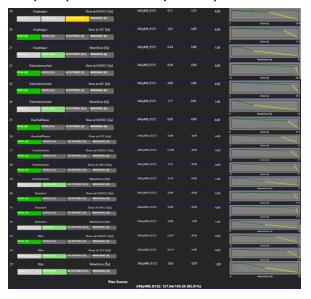



Prostate SBRT with Urethral Sparing: 5 field 250MeV vs 2 field IMPT PTV37.5Gy SIB Prostate 40Gy, 5fx 10Gy/fx

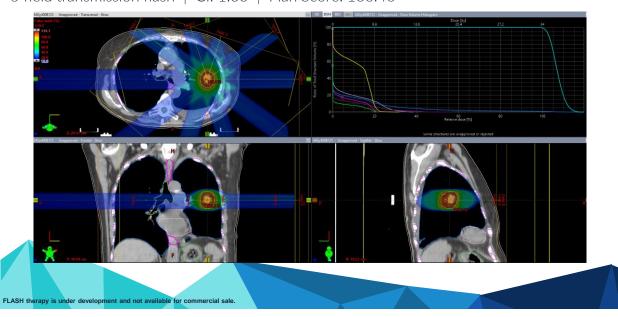
Prostate SBRT with Urethral Sparing: 5 field 250MeV vs 2 field IMPT PTV37.5Gy SIB Prostate 40Gy, 5fx 10Gy/fx

SBRT Lung 34Gy 1fx₀ RTOG 0915

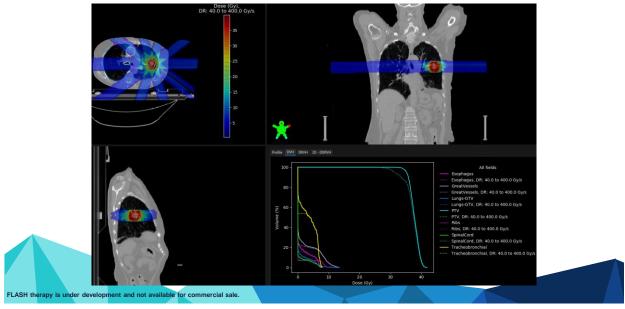

Table 1: Conformality of Prescribed Dose for Calculations Based on Deposition of Photon Beam Energy in Heterogeneous Tissue

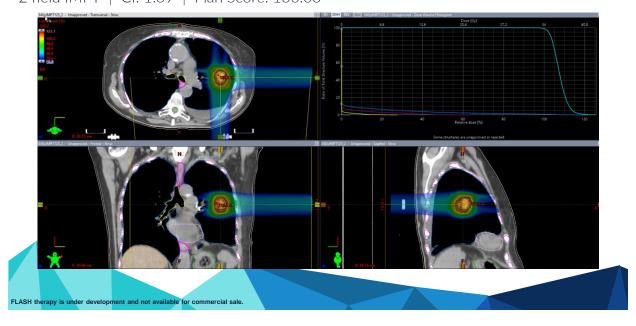

on Deposition of Photon Beam Energy in Heterogeneous Tissue									
PTV	Rat	io of	Ratio of 50%		Maximum Dose (in %		Percent of Lung		
Volume	Presc	ription	Prescription		of dose prescribed) @		Receiving 20 Gy		
(cc)	Isodose	Volume	Isodose	Volume	2 cm from PTV in Any		Total or More,		
	to the	PTV	to the	PTV	Direction, D _{2cm} (Gy)		V ₂₀ (%)		
	Vol	ume	Volum	e, R _{50%}		, , , ,			
	Deviation		Deviation		Deviation		eviation Deviation Deviation		riation
	None	Minor	None	Minor	None	Minor	None	Minor	
1.8	<1.2	<1.5	<5.9	<7.5	<50.0	<57.0	<10	<15	
3.8	<1.2	.<1.5	<5.5	<6.5	<50.0	<57.0	<10	<15	
7.4	<1.2	<1.5	<5.1	<6.0	<50.0	<58.0	<10	<15	
13.2	<1.2	<1.5	<4.7	<5.8	<50.0	<58.0	<10	<15	
22.0	<1.2	<1.5	<4.5	<5.5	<54.0	<63.0	<10	<15	
34.0	<1.2	<1.5	<4.3	<5.3	<58.0	<68.0	<10	<15	
50.0	<1.2	<1.5	<4.0	<5.0	<62.0	<77.0	<10	<15	
70.0	<1.2	<1.5	<3.5	<4.8	<66.0	<86.0	<10	<15	
95.0	<1.2	<1.5	<3.3	<4.4	<70.0	<89.0	<10	<15	
126.0	<1.2	<1.5	<3.1	<4.0	<73.0	>91.0	<10	<15	
163.0	<1.2	<1.5	<2.9	<3.7	<77.0	>94.0	<10	<15	

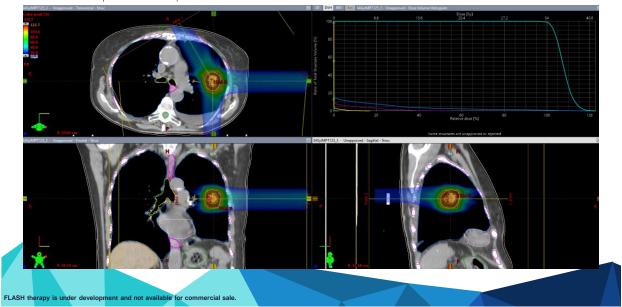
Note 1: For values of PTV dimension or volume not specified, linear interpolation between table entries is required.

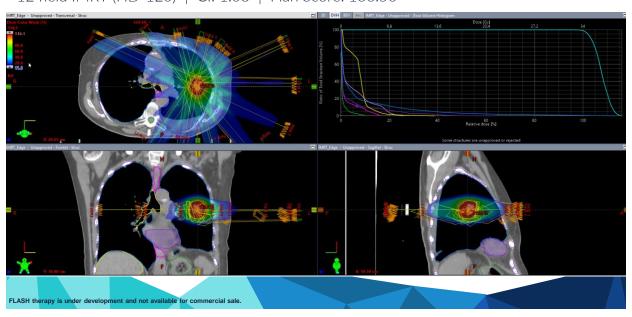

Note 2: Protocol deviations greater than listed here as "minor" will be classified as "major" for protocol compliance (see Section 6.7).

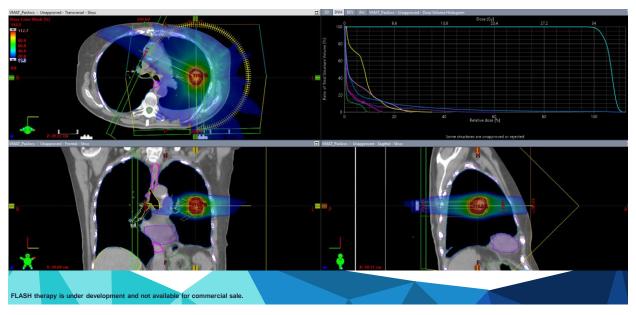
SBRT Lung 34Gy 1fx ScoreCard Example (143.5 total points)




SBRT Lung 34Gy 1fx 5 field transmission flash | CI: 1.33 | Plan Score: 136.46

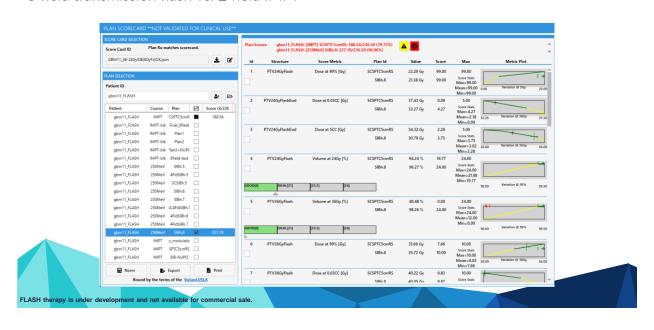



SBRT Lung 34Gy 1fx 2 field IMPT | CI: 1.39 | Plan Score: 136.03

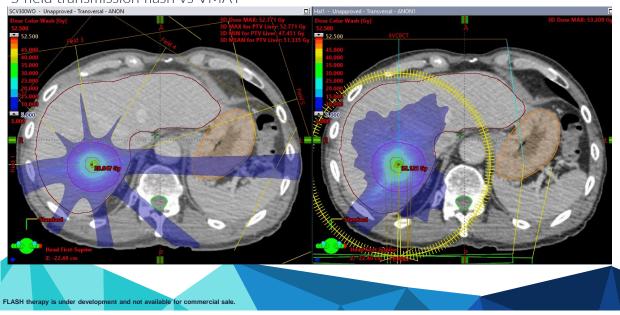

SBRT Lung 34Gy 1fx 3 field IMPT | CI: 1.36 | Plan Score: 138.42

SBRT Lung 34Gy 1fx 12 field IMRT (HD-120) | CI: 1.08 | Plan Score: 136.56

SBRT Lung 34Gy 1fx Halcyon 4 partial arc | Cl: 1.05 | Plan Score: 139.49


SBRT Lung 34Gy 1fx 2 field IMPT, 3 field IMPT, 5 field FLASH comparison

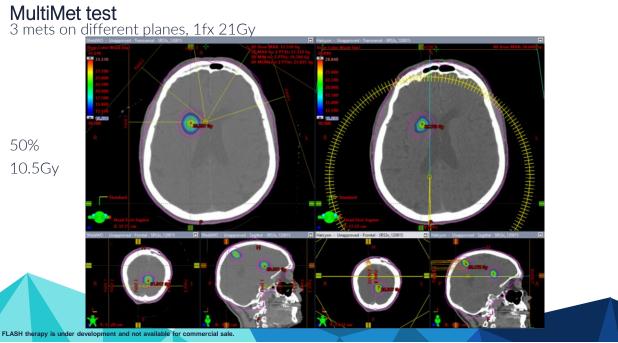
Lung PTV=23.69cc	Score x/143.5	Cl
FLASH 5 fields	136.46	1.33
IMPT 2 fields	136.03	1.39
IMPT 3 fields	138.42	1.36
IMRT 12 fields	136.56	1.08
VMAT 4 partial arcs	139.49	1.05


GBM 24Gy/36Gy SIB 6fx 2 field IMPT vs 5 field transmission flash

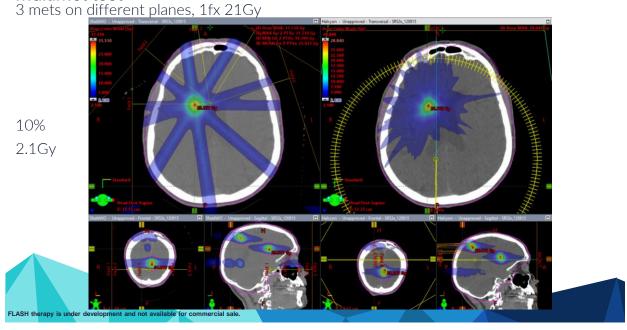
GBM 24Gy/36Gy SIB 6fx 5 field transmission flash vs. 2 field IMPT

Liver 50Gy 5fx (10Gy fractions) 5 field transmission flash vs VMAT SCY300WO - Unapproved - Transversal - ANON

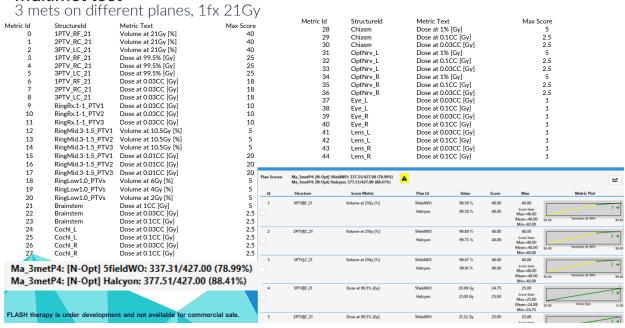
Liver 50Gy 5fx (10Gy fractions) 5 field transmission flash vs VMAT



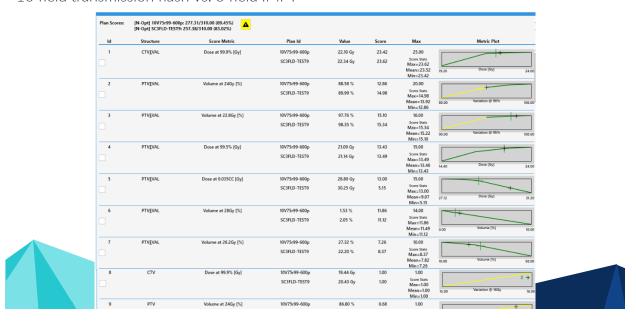
Live 5 fiel	r 50Gy d transm	5fx (10Gy hission flash v	r fractions) rs VMAT
Metric I	ld StructureId	Metric Text	Max Score
0	PTV Liver	Dose at 95% [Gy]	11
1	PTV Liver	Dose at 99% [Gv]	11


Metric Id	StructureId	Metric Text	Max Score
0	PTV Liver	Dose at 95% [Gy]	11
1	PTV Liver	Dose at 99% [Gy]	11
2	PTV Liver	Dose at 0.03CC [Gy]	11
3	Liver-GTV	MeanDose [Gy]	6
4	Liver-GTV	MeanDose [Gy]	5
5	Liver-GTV	Dose at 700CC [Gy]	10
6	Esophagus	Dose at 0.5CC [Gy]	6
7	Stomach	Dose at 0.5CC [Gy]	6
8	Duodenum	Dose at 0.5CC [Gy]	6
9	Bowel	Dose at 0.5CC [Gy]	6
10	Ring	Volume at 50Gy [%]	6
11	Ring	Dose at 0.05CC [Gy]	6
12	SpinalCordPRV	Dose at 0.5CC [Gy]	6
13	Kidneys	Dose at 33% [Gy]	6
14	Kidneys	MeanDose [Gy]	6
15	Kidneys	Dose at 10% [Gy]	6
16	Heart	Dose at 0.5CC [Gy]	6
17	Ribs	Dose at 2% [Gy]	6

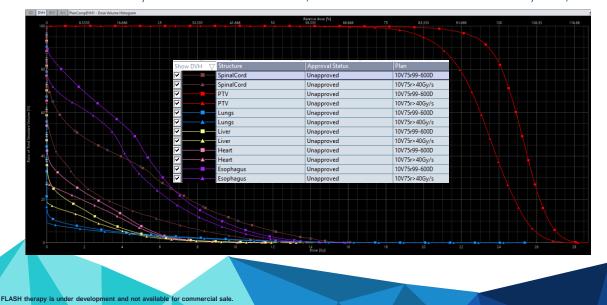
Plan Scores: 2022RSS_Liver2: [5field] SCV300W0: 120.18/126.00 (95.38%) 2022RSS_Liver2: [VMAT] Hal1: 119.71/126.00 (95.01%)							_	
ld	Structure	Score Metric	Plan Id	Value	Score	Max	Metric Plot	
1	PTV Liver	Dose at 95% [Gy]	SCV300WO	50.41 Gy	11.00	11.00		+
			Hall	49.11 Gy	10.64	Score Stats Max=11.00 Mean=10.82 45 Min=10.64	00 Variation @ 47.5Gy	
2	PTV Liver	Dose at 99% [Gy]	SCV300WO	50.03 Gy	11.00	11.00		+
			Hal1	48.23 Gy	10.36	Score Stats Max=11.00 Mean=10.68 42 Min=10.36	50 Variation @ 47.5Gy	
3	PTV Liver	Dose at 0.03CC [Gy]	SCV300WO	52.61 Gy	10.99	11.00		
			Hall	52.69 Gy	10.97	Score Stats Max=10.99 Mean=10.98 52 Min=10.97	50 Variation @ 60Gy	_
4	Liver-GTV	MeanDose [Gy]	SCV300WO	8.59 Gy	5.85	6.00	+	
			Hal1	9.60 Gy	5.72	Score Stats Max=5.85 Mean=5.79 7.5 Min=5.72	Variation @ 15Gy	
5	Liver-GTV	MeanDose [Gy]	SCV300WO	8.59 Gy	3.35	5.00	<u> </u>	
			Hall	9.60 Gy	3.14	Max=3.35 Mean=3.25 0.5 Min=3.14	0 MeanDose [Gy]	_
6	Liver-GTV	Dose at 700CC [Gy]	SCV300WO	3.36 Gy	10.00	10.00	.+	-
			Hal1	6.96 Gy	9.35	Max=10.00 Mean=9.67 Min=9.35	0 Variation @ 20Gy	
7	Esophagus	Dose at 0.5CC [Gy]	SCV300WO	9.93 Gy	5.67	6.00	+	
			Hall	7.16 Gy	5.76	Score Stats Max=5.76		


[5field] SCV300WO: 120.18/126.00 (95.38%) [VMAT] Hal1: 119.71/126.00 (95.01%)

MultiMet test


MultiMet test

SBRT spine 24Gy 1fx 10 field transmission flash vs. 3 field IMPT



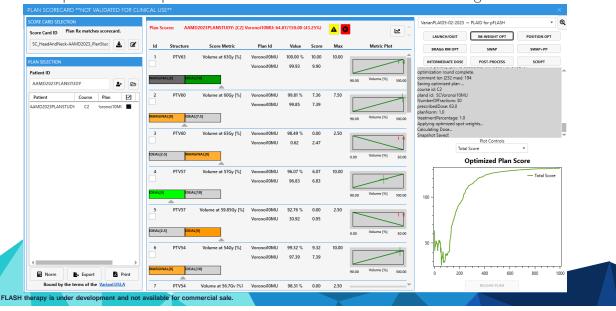
SBRT spine 24Gy 1fx 10 field transmission flash vs. 3 field IMPT vs. failed options and non-FLASH

Number of fields	Min MU score assigned	Min MU target	Score /310
2 (ML-IMPT)	0	-	*
3 (ML-IMPT)	0	-	257.38
5 (250MeV)	0	-	*
10 (250MeV)	0	-	290.14
10 (250MeV)	40	150	287.82
10 (250MeV)	40	300	290.34
10 (250MeV)	40	450	290.28
10 (250MeV)	80	450	289.36
10 (250MeV)	r99	600	284.10
10 (250MeV)	r99*	600	277.31
oment and not available for con	nmercial sale.		

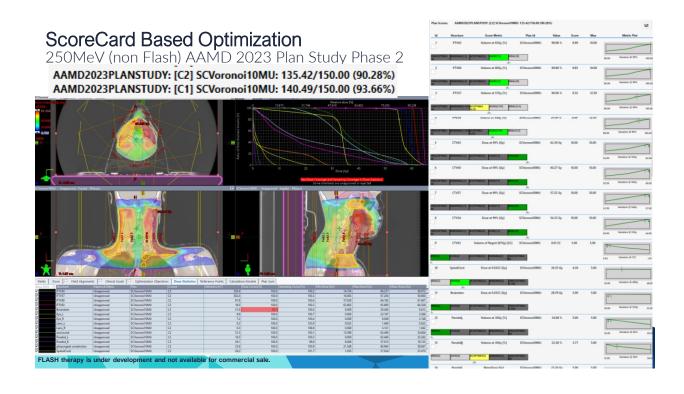
FLASH therapy is under develop

SBRT spine 24Gy 1fx
PBS Dose Rate analysis: Minimum MU=600 (Dose Rate Threshold DVH >40Gy/sec)

32



Future Possibilities


Where FLASH proton planning could go next

FLASH therapy is under development and not available for commercial sale.

ScoreCard Based OptimizationDirect optimization on piecewise linear DVH based score function ranges

33

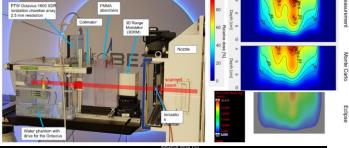
Spot Weight And Position Optimization DIRECT MACHINE PARAMETER OPTIMIZATION FOR INTENSITY MODULATED PROTON THERAPY

FLASH therapy is under development and not available for commercial sale.

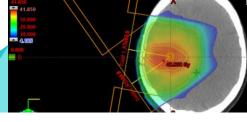
Bragg Peak Proton FLASH - AAPM 2023
End-to-end verification of multi-field-optimization FLASH-IMPT using a clinical GBM case

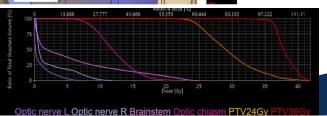
Miriam Krieger¹, Pierre Lansonneur², Uli Weber³, Christoph Schuy³, Yuri Simeonov⁴, Petar Penchev⁴, Marta Rovituso⁵, Ernst van der Wal⁵, Anthony Magliari⁶, Christopher Bayer⁶, Aaron Marshall⁶. Gerard Paquet⁶. Klemens Zink⁴. Michael M Folkerts⁶

1 Varian Medical Systems Particle Therapy GmbH & Co


2 Varian Medical Systems, Le Plessis-Robinson, France

3 GSI Helmholtzzentrum für Schwerionenforschung, D


4 Technische Hochschule Mittelhessen, Giessen, Germ


5 HollandPTC, Delft, The Netherlands

6 Varian Medical Systems Inc., Palo Alto, CA, USA

FLASH therapy is under development and not available for commercial sale.

Thank you!

Special Thanks to:

- Michael Folkerts
- Jessica Perez
- · Pierre Lansonneur
- · Miriam Krieger
- · Lesley Rosa

